Detecting Poisoning Attacks against Speech Datasets using Variational
Autoencoders

Nick Mehlman', Xuan Shi**, Aditya Kommineni'*, Shrikanth Narayanan'

Viterbi School of Engineering, University of Southern California, Los Angeles USA

nmehlman@usc.edu, xuanshi@usc.edu,

Abstract

In this paper, we address the threat of data poisoning at-
tacks by proposing a novel method for detecting and isolating
poisoned samples. Our approach uses a variational autoencoder
(VAE) trained in an unsupervised fashion on the manipulated
dataset. By performing per-class clustering and statistical anal-
ysis of the latent vectors, we can identify poisoned classes and
separate clean and poisoned samples. We evaluate our method
on an audio dataset and demonstrate that we outperform two
popular baseline defenses. Furthermore, we show the general-
izability of a single trained VAE model in exposing a variety of
different poisoning attacks against the same dataset.

Index Terms: poisoning attacks, speech recognition, adversar-
ial defense

1. Introduction

The past several years have seen the meteoric rise of machine
learning (ML) systems in diverse domains. From facial recog-
nition and speech-to-text to more recent generative models, the
general public now utilizes Al technology with a frequency
once reserved for toasters, refrigerators, and other common
household appliances. However, ML practitioners and con-
sumers alike have, until recently, failed to adequately consider
the safety and integrity of the systems they develop and use. It
is time to acknowledge the uncomfortable reality that serious
vulnerabilities may still be lurking behind the veneer of strong
test-set performance.

One particularly insidious threat is backdoor poisoning.
Given access to a small fraction of the training data, a bad actor
can modify the samples to inject a vulnerability (‘backdoor’)
into the resultant model. This is accomplished by inserting a
specific ‘trigger’ (e.g. as a small patch within an image) into the
features of a training sample and then switching the associated
label to a specific target class. When trained on this poisoned
data, the model will (incorrectly) learn to associate the trigger
with the target-class label, while still exhibiting expected per-
formance on benign data without the trigger. It will therefore
predict the targeted label for almost all examples containing the
trigger regardless of their true class. This process is analogous
to a young child who, observing that marriage usually precedes
the birth of a baby, incorrectly concludes that the latter is caused
by the former. Unlike the child, however, the model’s fallacious
association presents a serious threat to its integrity and reliabil-
ity.

In this work, we propose a novel method for detecting poi-
soning attacks, which we evaluate on a speech-command classi-
fication dataset. Our approach uses latent vectors generated by
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a variational autoencoder to identify inter-class anomalies in-
dicative of a backdoor attack. We demonstrate that our method
performs well in detecting targeted classes and identifying poi-
soned samples within the targeted class. Furthermore, we show
that the trained VAE model can effectively detect other attacks
launched against the same underlying dataset.

Our motivation for evaluating our defense on a speech clas-
sification task (as opposed to say speech recognition) is two
fold. Firstly, speech command classification is used for many
interactive voice response (IVR) systems, which are often em-
ployed in sensitive applications such as banking and technical
support. It is therefore highly plausible that a bad actor might
attempt to manipulate these models to achieve some nefarious
objective. Secondly, the complex nature of automatic speech
recognition (ASR) requires more sophisticated model architec-
tures and larger datasets that make it computationally difficult
to evaluate the efficacy of data poisoning attacks and defenses.
Command classification provides a more constrained frame-
work that still retains many key elements of ASR. It is there-
fore reasonable to hope that defenses developed in the command
classification domain might later be generalized to ASR appli-
cations.

2. Background and Problem Overview
2.1. Threat Model

We consider a standard backdoor threat model in which an at-
tacker can modify some small fraction ¢ of the training data D.
For simplicity, we assume that all of the examples under the
attacker’s control originate from a particular class y,, herein re-
ferred to as the source class. Given one such feature-label pair
(z,ys), the adversary first introduces an additive trigger ¢ to the
features to generate the =, = = + ¢. In the case of a speech
model, for example, ¢ might consist of an extraneous noise such
as a tone or clap. The adversary then changes the correspond-
ing label from the true class ys to a different class y; (herein
referred to as the target class). This process, applied to all the
examples under the adversary’s control, produces the poisoned
dataset D which is used by an unsuspecting victim to train a
model (referred to as a poisoned model). Let D) represent
the set of samples in the poisoned dataset with label y;. Note
that the set of samples assigned the target class label can be par-
titioned as D) = D f)ﬁ,yt) where D) is the set of

legitimate (clean) samples genuinely from class y;, and ﬁéyt)
is the set of imposter (poisoned) samples introduced by the at-
tacker.

If done correctly, this procedure causes the poisoned model
to establish a semantically meaningless association between the
trigger ¢ and the target class label y; while maintaining high
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Figure 1: Impact of a backdoor poisoning attack on the trained
model. The model trained on poisoned data responds to the
presence of the trigger by predicting the target class label re-
gardless of the true class to which the underlying sample origi-
nates.

predictive accuracy on non-poisoned samples. During evalua-
tion, samples containing the trigger are likely to be falsely pre-
dicted as belonging to the target class as shown in figure 1. In
other words, the trigger behaves as a ‘backdoor’ that essentially
compels the model to output the targeted label. Due to the fact
that this unexpected behavior is only visible when the specific
trigger ¢ is present, it is exceedingly difficult for an end-user to
identify that their model has been poisoned.

2.2. Prior Work

Some of the earliest work on data poisoning attacks against sup-
port vector machines was presented in [1]. This method was
later furthered to include more sophisticated models by the au-
thors of [2], who employed back-gradient optimization to syn-
thesize poisoned samples for maximal impact on the trained
model. Backdoor attacks were first described by [3]. Among
several adversarial strategies, they introduced the ‘pattern-key
attack’ in which the addition of a small pattern (trigger) to a
sample prompts the model to incorrectly output the targeted la-
bel. While the methods from [3] and [2] manipulate both fea-
tures and labels within the training data, [4] presented a ‘clean
label’ attack, whereby the poisoned training data retains the cor-
rect labels. Their approach introduced small-magnitude per-
turbations to the samples such that the learned model miss-
classified a set of target instances during evaluation.

A variety of defenses against poisoning attacks have also
been introduced. For example, a method is presented in [5] that
upper-bounds the impact of poisoned data by employing outlier
detection to filter the training data. In [6], the authors identified
the presence of backdoor attacks by clustering activations from
the trained model. They demonstrated that the target-class acti-
vations tend to be better described by two separate clusters re-
flecting the poisoned and clean samples. Hidden layer represen-
tations were also leveraged in [7], which used projection along
the principle singular value as a metric to detect poisoned data.
Meanwhile, [8] adopted a generative approach. Their method
searches for candidate triggers that cause the model to mistak-
enly predict all samples from one class as a different class. If
a particular class pairing admits such a trigger of sufficiently
small magnitude the model in question is likely backdoored.
Finally, [9] employs differential privacy theory to prove an up-
per bound on the effect of poisoned samples in the presence of
sample mixing and additive noise.

Poison Liklihood Score

class

Figure 2: Poison likelihood scores computed using eq. 1 for
each class in the VAE training data. The score for the targeted
class (class 2, shown in red) is substantially larger than the
benign classes (shown in green), thus validating the capability
of our statistical method to distinguish between clean and poi-
soned classes.

3. Proposed Method

Backdoor poisoning attacks exploit a critical vulnerability of su-
pervised learning: any input feature that is strongly correlated
with a given label will disproportionately influence the model’s
predictions, regardless of its true semantic relevance to the un-
derlying task. In the case of a backdoor attack, the presence
of the trigger is (by construction) highly predictive of the target
class label. However, for an unsupervised model, no such trig-
ger/label correlation can exist, and hence the learned represen-
tations of clean and poisoned samples are no longer associated
with each other. In our work, we leverage this principle to detect
backdoor poisoning attacks. In particular, we train a variational
autoencoder (VAE) on the dataset of interest, then use the ex-
tracted latent vectors to identify the targeted class and poisoned
samples. Recall that within a targeted class, there exist two het-
erogeneous sub-populations: the set of valid samples DY) that
truly belong to the class and a set of imposters ’ﬁz()yt) introduced
by the attacker. We expect this bimodality to be evident in the
latent vectors, thus enabling us to assess the likelihood that a
class has been poisoned and, if so, delineate between ﬁﬁyt) and

ﬁl(f”) using clustering methods. In addition to the benefits of
unsupervised learning, the VAE also provides an effective form
of dimensionality reduction that is critical to the proper sepa-
ration of clean and poisoned samples. We found that naively
applying PCA to raw features' failed to generate clusters that
aligned with D) and ﬁ,(,yt) (rand score =~ 0). In order to de-
tect the relatively subtle differences between the clean and poi-
soned distributions, the dimensionality reduction strategy must
be specifically adapted to capture key generative features in the
data.

3.1. Detecting Targeted Classes

After the VAE has been trained on the untrusted data, the first
challenge is to determine which, if any, of the classes has been
poisoned. To do this, we extract the latent vectors v; for each

!For our audio modality work we experimented with using audio
waveforms, LPC coefficients, and MFCCs
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Figure 3: Left: PCA visualization of 2-Means clustering for the latent vectors extracted from the target class in the VAE training dataset.
Right: distribution of clean and poisoned samples in the same. The clustering results exhibit strong alignment with clean/poisoned
ground-truth with an adjusted rand score of 0.978 and an accuracy of 0.995.
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Figure 4: ROC curve for distinguishing poisoned classes from
clean classes using our poison likelihood score (PLS). The plot
was generated using 220 poisoned SpeechCommands datasets
with different attack configurations and 100 trials with fully be-
nign data (i.e. no poisoning). All experiments employed a single
trained autoencoder. True positives reflect the correct detection
of a targeted class, while false positives represent incorrectly
identifying a benign class as poisoned. Poisoned classes are
identified with high accuracy (AUC = 0.9617), validating the
generalizability of our method for detecting targeted classes un-
der a variety of attacks.

sample and group them according to class label to form the
subsets V1,...,Vn where N is the number of total classes.
Next, we normalize and whiten the latent vectors within each
class, and reduce their dimensionality using PCA. Each class
subset is then partitioned into two clusters Vi(l) and Vim using
K-Means. As discussed previously, we expect that these clus-
ters will only reflect a genuinely bimodal distribution within the
poisoned class. In this case, assuming that the clusters properly
align with the clean and poisoned samples, the empirical distri-
butions of the latent vectors should differ substantially between
the two clusters. For non-poisoned classes, inter-cluster statis-

tics should be more similar as all samples originate from a com-
mon distribution. Thus we can predict whether or not a class
is poisoned by assessing how well the statistics of one cluster
generalize to the other. Since the latent vectors are generated
by a VAE, we fit an empirical multivariate Gaussian distribu-
tion to each cluster P (v; 1, 21) and Pa(v; 2, X2). We then
use the Gaussian model from one cluster to compute a negative
log-likelihood for the samples in the other cluster:

1

LEI):_T Z log P1 (vj; p1, 1)
Vil 5
]EV,i
and
1
LEQ):_T Z log P> (vj; p2, X2)
|V7L | (1)
JEV;

The score L; for each class is then computed by averaging
Lgl) and LEQ):

L= %@gv + L) (1

We refer to L; as the poison likelihood score (PLS). Any
targeted class is expected to have a high PLS indicative of the
fact that the samples in each cluster originate from distinct dis-
tributions. We can therefore flag likley poisoned classes by
looking for those with a disproportionally large PLS. Since the
exact magnitude of the score will depend on the specific dataset
and VAE model, this analysis must be made by comparing the
score across different classes and identifying outliers. In our
implementation, we aggregate the PLS over 10 clustering trials
to dilute the impact of random K-Means initializations.

3.2. Detecting poisoned samples

Once a poisoned class has been identified, it is desirable to de-
termine which samples in the class are poisoned, and which are
legitimate. This allows the malicious data to be removed or
re-labeled so that the dataset can be safely used for model train-
ing. Under our proposed method, this step is straightforward,
since the 2-Means clustering separates clean and poisoned sam-
ples with high accuracy. It is then simple to manually validate



Table 1: Hyperparameters used for the DSA VAE model.

Parameter Value
Sample latent dim 64
Time-step latent dim | 24
Conv. dim 256
Hidden dim 128
Training epochs 30
Learning rate 0.001

which of the clusters is poisoned and take appropriate steps to
mitigate the attack. Just as for the PLS, we average over 10 K-
Means trials to avoid local minima. Specifically, we first stan-
dardized the cluster labels for each trial by selecting the label
assignment (i.e. 1,0 or 0, 1) that assigns the maximum number
of samples to the same cluster. Then we averaged the (binary)
cluster assignments of each sample across the trials to generate
a soft aggregated cluster label. The final (hard) labels were then
generated by simple rounding with a threshold of 0.5.

4. Experiments
4.1. Dataset

We evaluated our method on a modified version of the Speech-
Commands dataset [10] which consists of short audio record-
ings of common commands (e.g., *go’, ’stop’). Our dataset in-
cluded the first 10 speech classes, one noise class, and a final
“other’ class that combined the remaining samples. To avoid the
effects of imbalanced data, we restricted the maximum number
of samples per class to around 3000. Each audio clip is 1 second
in length and is sampled at a rate of 16 kHz.

Using the Armory” framework, we poisoned the dataset
with a simple backdoor attack. A clap trigger was added to
10% of the samples from class 10, and the associated labels
were changed to class 2. For our poison detection analysis, we
considered only the 11 speech classes, as an attack mounted us-
ing the noise class is easily detectable due to the vastly different
nature of speech and noise signals.

4.2. VAE Model

We used the Disentangled Sequential Autoencoder (DSA)®
model presented in [11]. It enhances the capability of the VAE
framework to represent time series data (e.g. audio or video) by
incorporating a separate latent vector for each time step in addi-
tion to the sample-wide latent vector. Table 1 shows the hyper-
parameters used for the DSA model. To match the video-like
input shape required, we duplicated the speech spectrograms
along the RGB and frame-width dimensions. The model was
trained for 30 epochs.

After some experimentation, we found that the per-sample
latent vectors provided the most informative representation for
poison detection. We also observed that using 24 PCA compo-
nents for the pre-clustering dimensionality reduction produced
good empirical results.

’https://github.com/twosixlabs/armory/tree/
master

3The implementation we use can be found
at https://github.com/yatindandi/
Disentangled-Sequential-Autoencoder

4.3. Results

Figure 2 shows the poison likelihood scores for each class com-
puted using equation 1 on the latent vectors extracted from
VAE training data. The target class (shown in red) has a like-
lihood score that is almost twice as large as the benign classes
(shown in green)*. This supports the efficacy of our method
for distinguishing between poisoned and non-poisoned classes.
A 2-dimensional PCA visualization of the target class vectors
is shown in figure 3. The left plot reflects 2-means cluster-
ing while the right shows the clean/poisoned ground-truth. The
clustering aligns very well with the clean and poisoned sub-
sets, with an adjusted rand score of 0.978 or an accuracy of
0.995. The backdoored samples can therefore be reliably iden-
tified and removed before they can infect a downstream model.
To simulate this scenario, we trained two ResNet-50 [12] mod-
els: one on the original poisoned speech dataset, and a second
on a filtered dataset with the poisoned samples identified by our
method removed. We subsequently evaluated them on a sep-
arate test dataset both with and without poisoning. We found
that the original and filtered models performed similarly on the
unpoisoned data (89% and 91% accuracy respectively). How-
ever, the attack success rate (defined as the fraction of poisoned
samples for which the model predicted the target class) was re-
duced to only 5% for the cleaned model compared to 100% for
the original.

We also compared our defense to two popular baselines
for detecting poisoned samples, namely the activation defense
from [6] and the spectral signature defense from [7].° We eval-
uated the capabilities of both baselines against the same poi-
soning configuration used to generate the training data for our
VAE. The confusion matrices for detecting poisoned samples
are shown in figure 5. As can be seen, our defense substantially
outperforms both of the baselines, which suffer from high false
positive or false negative rates.

4.4. Generalization

While the VAE model was trained with a specific backdoor
threat model (i.e. source/target class, trigger choice), we found
that its detection capabilities generalize well to other attacks
launched against the same dataset. We employed this model to
detect a total of 220 different poisoning attacks on the Speech-
Commands data. This included all possible source/target class
combinations®, along with two different triggers (the clap used
in the VAE training data and a whistle that was unseen by the
model). Additionally, we ran 100 experiments with clean (non-
poisoned) data to determine the rate at which benign classes
were incorrectly flagged as malicious by the PLS. We evaluated
the accurate detection of poisoned (targeted) classes as well as
the separation of clean and poisoned samples within that tar-
geted class.

Figure 4 shows the ROC curve for target class detection
within the various poisoned and benign datasets. Our method
exhibits a high AUC score of 0.967, indicating that it can reli-
ably determine which, if any, of the classes has been poisoned
while retaining a low rate of false positives on non-poisoned
classes. This ability to detect a diverse array of attacks can be

4We do not consider the noise class in our analysis for the reasons
previously discussed

5We use the Adversarial Robustness Toolbox (ART) implementation
of both defenses which can be found at https://github.com/
Trusted-Al/adversarial-robustness-toolbox

6We exclude configurations in which the source and target class are
the same for obvious reasons.
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Figure 5: Confusion matrices for detection of poisoned samples. Results are shown for our VAE clustering method as well as the
activation defense from [6] and the spectral signature defense from [7]. All defenses are evaluated against the same poisoning attack
on the SpeechCommands dataset. Our defense performs substantially better in accurately identifying the poisoned samples without

high rates of false positives or missed detections.
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Figure 6: Adjusted rand score (0 to 1, higher is better) for detection of poisoned samples under different attacker threat models. Source
classes are shown along the vertical axis, while target classes are shown on the horizontal axis. All experiments used 10% of the
source class as the poisoned samples. An X marking indicates that our defense failed to correctly detect the targeted class for that
attack configuration. Note that we do not consider attacks in which the source and target classes are the same. Our method produces
generally high rand scores, suggesting that it is able to accurately detect poisoned samples for a variety of attacks launched on the

SpeechCommands dataset.

attributed to the VAE having accurately learned the underlying
generative distribution that describes the speech data. Thus our
statistical method for detecting bimodality within a given class
is robust to the various selections of source class, target class,
and trigger features.

The generalization performance of poisoned sample iden-
tification is shown in figure 6 which reports the adjusted rand
score (0 to 1, higher is better) for each of the 220 different at-
tack configurations we evaluated. An X mark for a given ex-
periment indicates that our method failed to correctly identify
the targeted class. Sample detection is generally strong for the
clapping trigger, with approximately 72% of the experiments
producing a rand score greater than or equal to 0.95. Detection
accuracy for the whistle trigger is somewhat weaker, with only
around 62% of experiments exceeding the 0.95 threshold. This
drop in performance is likely attributable to the fact that the
dataset used to train the VAE was poisoned with the clapping

trigger, thus rendering the model more sensitive to the presence
of the clap than to the previously unseen whistle. Furthermore,
the clap and whistle differ substantially in terms of both their
spectral content and temporal envelope.

Figure 6 also reveals that the majority of failure cases in
which our defense fails to identify the target class occur in ex-
periments with the clapping trigger when the attacker selects
target class 10. Class 10 represents the ‘other’ class, that con-
tains a combination of different speech commands. Our method
for identifying poisoned classes relies on the fact that the clean
samples share a common underlying distribution, distinct from
that of the poisoned samples. This assumption is clearly vio-
lated for class 10, which is already highly heterogeneous even
in the absence of any poisoning attack. Interestingly, under the
whistle trigger, our defense does correctly detect target class
10, although sample detection performance remains relatively
poor. This may be due to the tonal nature of the whistle trig-
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ger which closely resembles the harmonic structure of voiced
speech. Since the VAE model is naturally attuned to such
speech-relevant features, the presence of the whistle may be
sufficient to differentiate the distribution of poisoned samples
from that of the clean speech.

We also ran an ablation study to evaluate how well out
method performed with varying amounts of poisoned data. Us-
ing a fixed source class, target class, and trigger (the same as
in the VAE training data) we varied the fraction of the source
class used for poisoning from 0.01 to 0.3. The resulting rand
scores are shown in figure 7. Our defense identified the poi-
soned samples with high accuracy for all but the smallest poi-
son fraction, where it failed to correctly detect the target class.
These results suggest that our method is relatively insensitive
to the exact amount of poisoning data injected by the attacker,
further validating it generalizability.

5. Conclusion

In this paper, we have introduced a novel method for detecting
poisoning attacks using latent vectors extracted from a varia-
tional autoencoder trained on the poisoned data. Our approach
uses clustering within label groups to identify targeted classes
and subsequently separate clean and poisoned samples within
the poisoned class. We evaluate the performance of our defense
on an audio dataset and show that it outperforms two popular
baselines. Additionally, we demonstrate that our trained VAE
model is capable of generalizing to detect different poisoning
attacks provided the underlying dataset is the same as the one
on which it was trained.

Our defense offers a number of benefits over other meth-
ods for poison sample detection. First, the per-class poison
likelihood score implicitly assigns a ‘risk level’ that reflects
the integrity of the underlying training data. An end user can
therefore feasibly assess the likelihood of poisoned data within
a large dataset and take appropriate action as fit their particu-
lar use case and risk tolerance. Furthermore, the robustness of

our defense in detecting targeted classes enables this kind of
trustworthiness test to be performed even in cases where the
poisoned samples themselves cannot be adequately separated.
Secondly, the generalizability our defense exhibits means that
a single autoencoder can be used to detect a variety of poison-
ing attacks, without the need for re-training. This is especially
useful in the case where a commonly used dataset (e.g. MNIST
[13]) is available from multiple different online sources of un-
known repute.

Future work should consider whether a sufficiently power-
ful VAE might be used to detect attacks across different datasets
of the same modality (e.g. image, audio), perhaps with a few
epochs of fine-tuning. This would further reduce the compu-
tational cost required for training a separate model for poison
detection. Another important question is what other unsuper-
vised methods and models might be leveraged to identify poi-
soned samples. Finally, we have yet to explore the generative
capabilities of the VAE architecture. It may be possible to gen-
erate reconstructions of poisoned samples without the trigger,
thus avoiding the data loss that results from simply discarding
poisoned data.
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