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Abstract
Automatic Speech Understanding (ASU) leverages the power
of deep learning models for accurate interpretation of human
speech, leading to a wide range of speech applications that en-
rich the human experience. However, training a robust ASU
model requires the curation of a large number of speech sam-
ples, creating risks for privacy breaches. In this work, we in-
vestigate using foundation models to assist privacy-enhancing
speech computing. Unlike conventional works focusing pri-
marily on data perturbation or distributed algorithms, our work
studies the possibilities of using pre-trained generative mod-
els to synthesize speech content as training data with just label
guidance. We show that zero-shot learning with training label-
guided synthetic speech content remains a challenging task. On
the other hand, our results demonstrate that the model trained
with synthetic speech samples provides an effective initializa-
tion point for low-resource ASU training. This result reveals
the potential to enhance privacy by reducing user data collec-
tion but using label-guided synthetic speech content.
Index Terms: speech emotion recognition, spoken language
understanding, privacy, synthetic data, foundation model

1. Introduction
1Speech provides a natural way for us to express ourselves,
enabling the effortless exchange of thoughts, emotions, and
ideas. Automatic speech understanding (ASU) typically in-
volves interpreting and comprehending human speech, bringing
significant benefits in connecting individuals from diverse back-
grounds and assisting individuals with speech impairments.
Modern ASU systems typically leverage the power of deep
learning [1] models for accurate and robust interpretation of
human speech, leading to a wide range of speech applications
that improve productivity, enhance the quality of life, and enrich
the human experience. For example, popular virtual assistants,
like Amazon Alexa, Apple Siri, and Google Assistant, equipped
with advanced ASU models, empower numerous novel human
experiences that substantially increase user satisfaction.

The success of such an ASU system crucially depends on
the performance and robustness of the deployed deep learn-
ing models. One critical factor in ensuring the reliability of
these deep learning models for ASU relies primarily on collect-
ing qualitative training data. Typically, these datasets include
large-scale speech samples from various speakers, languages,
and acoustic conditions, leading models to learn diverse vari-
ations in speech patterns, intonations, and other environmental
factors that may affect speech understanding. However, acquir-
ing speech data frequently raises significant concerns regarding
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data privacy. In addition to relevant information for developing
the ASU system, speech data often carry sensitive information
about a person, such as individual demographic attributes (e.g.,
age, gender), states (e.g., health), or biometric fingerprints (e.g.,
voice print) [2]. Therefore, it is essential for ML practitioners
to investigate privacy-enhancing approaches for training ASU
models.

Data transformation is widely used to prevent privacy in-
ferences in training the ASU model. For example, researchers
applied perturbations to suppress private information from the
speech data while minimally interfering with the ASU task
[3, 4, 5, 6, 7]. Recently, Federated Learning (FL) [8] has be-
come an emerging privacy-enhancing learning algorithm that
allows clients to train a model collaboratively without shar-
ing their data. For instance, prior works explored the ability
of FL on diverse ASU tasks, including keyword spotting [9],
ASR [10], and emotion recognition [11]. Although numer-
ous efforts have been made in privacy-enhancing research, re-
searchers demonstrated that the above methods could still leak
private information in every possible way [12, 13, 14, 15].

Recent advances in foundation models have empowered
many evolving technologies, notably generative AI (e.g., Chat-
GPT and DALL-E-2 2, etc.), enabling the creation of high-
fidelity content in formats of images, audio, and natural lan-
guage based on user-input requirements or prompts. These ad-
vances in generative AI also present opportunities for privacy-
enhancing computing, as high-quality generated content poses
minimum privacy leaks while offering possibilities to serve as
training data. For example, the prior study by [16] demon-
strated that training with pure synthetic images could perform
better than training with authentic images under zero-shot learn-
ing settings. Moreover, researchers studying large language
models (LLMs) have broadly adopted synthetic text data as
self-instructions for fine-tuning [17]. Finally, [18] also report
that using synthetic speech samples in speech recognition train-
ing can improve ASR performance. However, these synthetic
speech data are still generated from an existing text corpus.

Inspired by [19], in this paper, we provide an early inves-
tigation of using label-guided synthetic speech data for ASU
training. Unlike previous studies that aim to protect privacy us-
ing data transformation or distributed algorithms, our method
focuses on unlocking the possibilities of using synthetic con-
tent as training data to enhance privacy, leading to the re-
duced need to collect user data or potential in local few-shot
training. Specifically, we perform a two-stage speech syn-
thesis approach combining the LLMs with the text-to-speech
(TTS) model. We begin with prompting the LLMs with the
label-related information to generate spoken text data which
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Figure 1: ASU training framework used for this work leveraging synthetic speech data. The framework begins with label-guided
prompts that generate spoken utterances, followed by a text-to-speech model that creates synthetic speech data. The synthetic speech
data is used to train the end-to-end ASU model. We use the pre-trained WavLM Base+ as the backbone for fine-tuning.

is then transformed into speech data using the text-to-speech
(TTS) model. Our proposed method can synthesize speech data
without the constraints of an existing text corpus. Specifically,
our study aims to answer two fundamental and critical research
questions related to privacy-enhancing speech understanding:
• Training ASU models with only synthetic data provide the

strongest guarantees to user privacy as no actual user data is
exposed. However, there is constrained knowledge about the
training utilizing label-guided synthetic speech. As a result,
are label-guided synthetic speech content ready for train-
ing ASU models compared to real speech data?

• Recent privacy laws, like the EU’s General Data Protection
Regulation (GDPR) [20], have prevented the unauthorized
collection or misuse of user data, leading to limited data for
model training. It is more prevalent to train models with low-
resource data to comply with privacy regulations. Therefore,
are label-guided synthetic speech content ready for low-
resource speech training for ASU?

2. ASU Tasks
This work focuses on two popular ASU tasks: speech emotion
recognition (SER) and spoken language understanding (SLU).
Speech Emotion Recognition [21] aims to automatically clas-
sify expressed emotions (e.g., neutral, sad, and happy) from
speech signals, where the categorical emotion labels are typi-
cally acquired from human annotators. Understanding emotions
from human conversations has broader applications in virtual
assistants, education, and healthcare.
Spoken Language Understanding [22] is the task that involves
processing speech utterances for domain classification, intent
detection, and slot filling. There is a steadily growing interest in
deploying robust and efficient SLU systems on mobile and edge
applications. Conventional SLU systems typically transcribe
the speech signal into spoken format text using ASR models,
followed by natural language understanding (NLU) models to
recognize the domain and intent. In recent years, researchers

have focused on developing end-to-end recipes that directly
map speech signals to classify SLU related tasks [23]. In this
study, we focus on using end-to-end models for SLU tasks.

3. Two-stage Speech Content Synthesis
In this work, we propose a two-stage speech synthesis frame-
work as demonstrated in Figure 1.
Spoken Text Generation We first apply label information to
generate spoken text using LLMs. As shown in Figure 1, the
process involves generating spoken utterances that convey par-
ticular emotions with prompt messages: Generate a spoken ut-
terance with emotion, where represents categorical emo-
tion labels, such as neutral, happy, and sad. When we aim to
generate spoken utterances with intent, we adopt the following
prompt message: Generate a spoken utterance with intent to .
In this study, we use the FLAN-T5 [24] as the language model
that consists of 11.3B parameters.
Text-to-Speech The second stage in speech synthesis involves
text-to-speech module. We use the prompted output from spo-
ken text generation as the input to the text-to-speech model to
directly synthesize speech data. Specifically, we utilize the re-
cently released SpeechT5 model [25] for text-to-speech. We
augment the speaker information by sampling the x-vector [26]
from The CMU Arctic dataset [27].

4. Modeling Approach
Pre-trained Speech Backbone Our downstream modeling ap-
proach utilizes the widely adopted pre-trained speech models,
WavLM, as the backbone. WavLM is a self-supervised model
that optimizes multiple training objectives, including masked
speech prediction, masked speech denoising, and frame predic-
tion. This model is effective in a wide range of ASU tasks [28].
The WavLM base encoder includes 12 encoding layers with ap-
proximately 90M parameters.
End-to-End Downstream Modeling Our modeling approach



Table 1: Summary of dataset statistics used in this work.

Datasets Unique Speakers Classes Total Utterances

IEMOCAP 10 4 5,531
MSP-Improv 12 4 7,798

SLURP 177 46 72,277

draws inspiration from [29], which highlights that combining
the hidden outputs from all encoder layers provides substan-
tially higher performance than relying on the last hidden output
for the downstream speech task. In addition, [29] also shows
that fine-tuning pre-trained speech models with the backbone
encoder frozen provides simple but competitive results com-
pared to unfreezing the encoder. In summary, our end-to-end
modeling framework starts with weighted averaging to combine
the hidden outputs from all encoder layers, where the weights
are parameterized. Our downstream model consists of two 1D
pointwise convolutional layers with a kernel size of 1 and a fil-
ter size of 256. The convolutional layers are connected with the
ReLU activation functions. A global average pooling is applied
to the convolutional layer output, leading to an output vector of
size 256. Following this, the output vector is fed into two fully
connected layers for the classification tasks in ASU.
Parameter-Efficient Fine-tuning In addition to relying on
training downstream models, we decide to incorporate LoRa
(Low-rank Adaptation) [30] in the fine-tuning stage.
LoRa adapts the model updates with low-rank matrices during
the training phase, bringing benefits to lower inference latency
and ease of optimization. Previous work has demonstrated the
effectiveness of applying LoRa in fine-tuning ASU tasks [31].

5. Datasets
Table 1 displays data statistics for the three datasets included
in this work. We use IEMOCAP and MSP-Improv datasets for
SER experiments and the SLURP dataset for SLU training.
Speech Emotion Recognition IEMOCAP [32] used in this work
contains multi-modal (motion, audio, and video) recordings of
acted human interactions from ten subjects, with half males and
half females. Moreover, MSP-Improv [33] corpus is devel-
oped with the target of investigating naturalistic emotions that
were elicited from improvised situations. Similar to the IEMO-
CAP dataset, the corpus comprises audio and visual data col-
lected from 12 individuals, with an equal number of subjects
in both genders. Due to imbalanced label distribution in both
datasets, we decided to keep the four most frequently presented
emotions for all the datasets, as recommended in [29].
Spoken Language Understanding SLURP [34] is the spoken
language dataset collected for designing in-home personal robot
assistants. The speech data were recorded from over 100 par-
ticipants reading the collected text prompts carefully crafted by
Mechanical Turk (AMT) workers. An example prompt with the
intent to ask for time is: How would you ask for the time? Each
recording belongs to one unique intent from 46 intent classes.
The complete dataset contains a total of 72,277 utterances. We
studied the intent classification using the SLURP dataset.

6. Results
6.1. Experiment Details

Data Split: We apply 5-fold and 6-fold evaluation on
IEMOCAP and MSP-Improv datasets, where each session is
regarded as a unique test fold. During each training fold, one
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Figure 2: Baseline fine-tuning performance between real speech
data and synthetic speech data.

data session is used for validation, while the rest are for train-
ing. In the SLURP study, we perform the experiment using the
standard splits for training, validation, and testing.
Speech Generation: We generate 1,000 spoken text of each
emotion class belonging to neutral, sad, happy, and angry, lead-
ing to 4,000 synthetic utterances for SER training. On the other
hand, we generate 100 spoken texts with each unique intent as-
sociated with the SLURP dataset, resulting in 4,600 synthetic
speech samples for training SLU. We control the maximum out-
put token size as 32 and model temperature as 1.0.
End-to-end Training: We set the batch size as 64 in baseline
experiments, including fine-tuning both natural and synthetic
data. Specifically, we set the learning rate as 0.0005 and the
maximum training epoch as 30 for SER training. We use a
learning rate of 0.005 and a maximum training epoch of 50 for
SLU training. We set the maximum audio duration as 6 sec-
onds and 3 seconds for SER and SLU datasets, respectively.
All experiments are implemented using PyTorch. The experi-
ments are conducted on a high-performance computing server
with A40 GPUs. We use the checkpoints of each pre-trained
model from HuggingFace [35].

6.2. Examples of Spoken Text by Prompt

We provide examples of spoken text generated by prompting the
LLM to showcase the quality of text input to the TTS module.
SER Examples We provide one example of each emotion:
• Neutral: ”Okay, can you finish a glass of wine, please.”
• Happy: ”We had so much fun in Florida.”
• Sad: ”All I want to do is cry.”
• Angry: ”Why can’t you just admit that you broke my car!”
SLU Examples We provide one example with each intent to set
alarms, query contact, and mute the volume:
• Set Alarms: ”You want the alarm to go off in 3 hours.”
• Query contact: ”I’d like to get a list of contacts who are

in the San Francisco area.”
• Mute the volume: ”Turn your volume down.”,

6.3. Are label-guided synthetic speech content ready for
training ASU models?

This subsection compares the training performance between
real speech data and label-guided synthetic speech data. The re-
sults are presented in Figure 2. We use the unweighted average
recall (UAR) and Macro-F1 to assess the performance of SER
and SLU tasks, respectively. The results demonstrate that zero-
shot performance with label-guided synthetic speech data is no-
tably worse than training with real speech data in both SER and
SLU tasks. This finding aligns with a prior study [36] that re-
ported a substantial decline in performance when training exclu-
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Figure 4: Fine-tuning performance between random initializa-
tion and synthetic data assisted model initialization in low-
resource speech training. The x-axis represents the available
real speech data ratio presented for low-resource training.

sively with synthetic speech data in ASR tasks. Consequently, it
implies that even achieving the same level of performance with
real speech training is still challenging using zero-shot learning
with label-guided synthetic speech content.

6.4. Are label-guided synthetic speech content ready for
low-resource speech training for ASU?

Here, we further investigate the role of label-guided synthetic
speech content in low-resource speech training. We reduce the
learning rate in training SER models to 0.0001 to prevent over-
fitting from fewer training samples.
Zero-shot Learning with Synthetic Speech still underper-
forms Low Resource Speech Training: We first compare the
zero-shot performance with label-guided synthetic speech con-
tent and regular training with low-resource speech content. The
comparison in Figure 3 reveals that, in most cases, zero-shot
performance with label-guided synthetic speech content fails to
provide competitive performance to low-resource speech train-
ing. The only exception to this trend is observed when utilizing
5% real speech with SLURP data for the SLU task. This finding
further strengthens the implication that zero-shot learning with
label-guided synthetic speech content training is challenging.
Low Resource Speech Training Leveraging Label-guided

Synthetic Speech Can Substantially Boost the Performance:
We further investigate low-resource speech training leveraging
the label-guided synthetic speech content. Inspired by [19], we
employ the model trained with label-guided synthetic speech
samples as the initialization point for low-resource speech train-
ing. Figure 4 illustrates the performance differences between
random initialization and synthetic data assisted initialization.
The results indicate that, with an equal amount of real training
speech data, synthetic data assisted initialization yields a sub-
stantial performance improvement compared to random initial-
ization. Moreover, synthetic data assisted initialization leads to
comparable ASU performance between training using 20% and
full data (e.g., 20% data and full data yield 62.32% and 66.01%
F1 scores on SLURP data, respectively). These findings high-
light that although it is challenging to train the ASU model us-
ing label-guided synthetic data in lower-resource settings, the
synthetic data assisted initialization proves to be effective, sig-
nificantly enhancing the low-resource training performance.

7. Implications For Enhancing Privacy
Privacy-Enhancing Speech Training Leveraging Label-
guided Synthetic Speech content is Feasible. It is promising
that under the extremely low-resource condition (5%), synthetic
data assisted model initialization provides competitive model
performance. This finding suggests the possibility of collect-
ing significantly fewer private data, therefore reducing privacy
concerns and risks associated with data leaks or misuse.

Personalized/Local Learning to Enhance Privacy The cur-
rent results also imply the possibility of few-shot learning on the
user side without sharing user data. Our future studies would
focus on personalized/local learning utilizing synthetic data as-
sisted model initialization to minimize privacy risks.

Improving Text Generation Could Further Enhance the
Data-free Zero-Shot Learning We conjecture that improving
the current text prompt would substantially boost the zero-shot
learning performance. As presented in Fig 2, the current label-
guided text generation may not produce qualitative texts (e.g.
low perplexity) for training. This can be related to the con-
straints of the chosen LLM. These findings emphasize the need
for exploring more powerful LLMs such as GPT-4. For exam-
ple, the current LLM failed to understand the prompt to gen-
erate the spoken utterance with the intent to tell a joke, and an
incorrect example output is: ”Hey man, it’s raining again.”

Enhance Text-to-speech Quality To Improve Data-free
Zero-Shot Learning Apart from the quality of the text gen-
eration, the TTS output also plays a critical role in the zero-shot
learning performance with synthetic speech. The existing TTS
module lacks the capability to convey a wide range of emo-
tions and prosodic styles comparable to human speech which is
essential for generating emotional speech samples. Our future
work aims to explore more advanced TTS models.
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